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Abstract

We propose textural features, which are invariant to
illumination spectrum and extremely robust to illumina-
tion direction. They require only a single training im-
age per texture and no knowledge of illumination direc-
tion or spectrum. Hence, these features are suitable for
content-based image retrieval (CBIR) of realistic scenes
with colour textured objects and variable illumination.
The illumination invariants are derived from Markov
random field based texture representations. Our illu-
mination invariant features are favourably compared
with frequented features in this area - the Local Bi-
nary Patterns, steerable pyramid and Gabor textural
features, respectively. The superiority of our new in-
variant features is demonstrated in the illumination in-
variant recognition of the most advanced representation
for realistic real-world materials - Bidirectional Texture
Function (BTF) textures.

1. Introduction

Textures are important clues to specify objects
present in a visual scene. Unfortunately, the appear-
ance of natural textures is highly illumination and view
angle dependent. As a consequence, most recent realis-
tic texture based classification or segmentation methods
require multiple training images [18] captured under all
possible illumination and viewing conditions for each
class. Such learning is obviously clumsy, probably ex-
pensive and very often even impossible if required mea-
surements are not available.

Authors [2] allow a single training image per class,
but they require uniform albedo surfaces and the knowl-
edge of illumination direction. The normalisation can-
celing lighting variations caused by the object geom-
etry [4] completely wipes out rough texture structures
with all its valuable discriminative information. It suf-
fers also with instability due to involved nonlinear trans-

formations. The above mentioned drawbacks are in-
evitable, because there is no discriminative function
for grey images of objects with Lambertian reflectance
that is illumination direction invariant [1]. The quasi-
invariants [19] compromise full invariance to be less
noise sensitive. Local Binary Patterns [13] (LBP) are
popular illumination invariant features, but very noise
sensitive [17]. Other options are parameters of Weibull-
distribution of image edges [6] (six-stimulus theory),
the logarithm of Gabor filter responses together with
new Gaussian colour model [5], which is a subclass of
illumination model we use.

We introduce textural features, which are robust to
illumination direction changes. This property is veri-
fied on University of Bonn BTF texture measurements
[12], where illumination sources are spanned over 75%
of possible illumination half-sphere. We require only a
single training image per texture and no knowledge of
illumination direction. Our features are also invariant
to illumination brightness and spectrum changes, and
robust to Gaussian noise degradation [17]. In contrast
with the similar test setup [9], we employ newly de-
rived illumination invariants, which result in significant
improvement even in more difficult arrangement (more
than twice textures, half resolution, and different view-
points) presented hereafter.

2. Texture Representation

Let us assume that each multispectral texture (com-
posed of C spectral planes) can be modeled either by
a 3-dimensional Markov random field (MRF) model
or spectral planes can be mutually decorrelated by the
Karhunen-Loeve transformation (Principal Component
Analysis) and subsequently modeled using a set of C
2-dimensional MRF models. The texture is factorised
into K levels of the Gaussian pyramid, so we can use
lower order MRF factor models.

Let us denote a multiindex r = (r1, r2) , where
r1 is the row and r2 the column index, respectively.
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Yr is multispectral pixel at location r and Yr,j is its
j-th spectral plane component.

2.1. MRF Models

A multispectral texture factor (for the kth Gaussian
pyramid level) is represented using either adaptive 3D /
2D causal autoregressive random (CAR) field model [8]
or 2D Gaussian Markov random field model (GMRF)
[7]. All these models can be unified in the following
matrix equation form:

Yr = γZr + εr , (1)

where
Zr = [Y Tr−s : ∀s ∈ Ir]T (2)

is the Cη × 1 data vector with multiindices r, s, t,
γ = [A1, . . . , Aη] is the C × C η unknown parame-
ter matrix with submatrices As. In the case of C 2D
CAR / GMRF models stacked into the model equation
(1) the parameter matrices As are diagonal otherwise
they are full matrices for general 3D CAR models. The
contextual neighbour index shift set is denoted Ir and
η = cardinality(Ir) . GMRF and CAR models mu-
tually differ in the correlation structure of the driving
noise εr (1) and in the topology of the contextual neigh-
bourhood Ir (see [7] for details). As a consequence, all
CAR model statistics can be efficiently estimated ana-
lytically [8] while the GMRF statistics estimates require
either numerical evaluation or some approximation.

Given the known CAR process history Y (t−1) =
{Yt−1, Yt−2, . . . , Y1, Zt, Zt−1, . . . , Z1} the parameter
estimation γ̂ can be accomplished using fast, numeri-
cally robust and recursive statistics [8]:

Vt−1 = Ṽt−1 + V0 ,

Ṽt−1 =
(∑t−1

u=1 YuYu
T ∑t−1

u=1 YuZu
T∑t−1

u=1 ZuYu
T ∑t−1

u=1 ZuZu
T

)
=

(
Ṽyy(t−1) Ṽ Tzy(t−1)

Ṽzy(t−1) Ṽzz(t−1)

)
,

λt−1 = Vyy(t−1) − V Tzy(t−1)V
−1
zz(t−1)Vzy(t−1) ,

where V0 is a positive definite matrix (see [8]).

2.2. Illumination Invariant Features

We assume fixed positions of viewpoint and illu-
mination sources, the illumination sources are sup-
posed to be far enough to produce uniform illumination.
Based on the work [3], assuming Lambertian surface re-
flectance, the two images Ỹ , Y acquired with different
illumination spectra can be transformed to each other:

Ỹr = B Yr ∀r , (3)

where Ỹr, Yr are multispectral pixel values at position
r and B is a C×C transformation matrix. The linear
formula (3) is also valid for more illumination sources
provided that the spectra of all sources are the same
and the positions of the illumination sources remain
unchanged. More importantly, it can be proved that
formula (3) is able to model specular reflectance com-
ponent (e.g. dichromatic reflection model [15], which
comprise well-known Phong model).

With the previous assumptions, the following illumi-
nation invariant features 1. 2. 6. 7. can be derived
from the estimated MRF statistics for GMRF models
with centered Yr,j , while 1. – 5. are CAR invariants. In
the case of 2D models, invariants 3. – 7. are computed
for each spectral plane separately.

1. trace: trAm, m = 1, . . . , η K

2. eigenvalues: νm,j of Am, m = 1, . . . , η K,
j = 1, . . . , C

3. α1: 1 + ZTr V
−1
zz Zr ,

4. α2:
√∑

r (Yr − γ̂Zr)T λ−1 (Yr − γ̂Zr) ,

5. α3:
√∑

r (Yr − µ)T λ−1 (Yr − µ) ,
µ is the mean value of vector Yr,

6. α4:
√∑

r σ̂
−2
j (Yr,j − γ̂jZr,j)2 ,

7. α5:
√∑

r σ̂
−2
j (Yr,j)

2
.

Feature vectors are formed from these illumination in-
variants, which are easily evaluated during the MRF pa-
rameters estimation process.

The distance between feature vectors of two textures
T, S is computed using the Minkowski norms L1, L0.2,
or alternatively with fuzzy contrast [14] in its symmet-
rical form FC3:

Lp(T, S) =

(
M∑
i=0

∣∣∣f (T )
i − f (S)

i

∣∣∣p)
1
p

,

FCp (T, S) = M −

{
M∑
i=1

min
{
τ(f (T )

i ), τ(f (S)
i )

}
− p

M∑
i=1

∣∣∣τ(f (T )
i )− τ(f (S)

i )
∣∣∣} ,

τ(fi) =
(

1 + exp
(
−fi − µ(fi)

σ(fi)

))−1

,

where M is the feature vector size and µ(fi) and σ(fi)
are average and standard deviation of the feature fi
computed over all database, respectively. The sigmoid
function τ models the truth value of fuzzy predicate.



Figure 1. Effects of illumination direction
chages on BTF material examples: ceil-
ing, foil, corduroy, wool, lacquered wood.

3. Experiments

We have designed our experiments to test the method
robustness to illumination direction changes, which
drastically violates our previous theoretical assump-
tions. The experiments are performed on three dif-
ferent sets of 1215 BTF texture images. These BTF
data are from the University of Bonn database [12]
and contain BTF colour measurements such as ceiling,
corduroy, two fabrics, walk way, foil, floor tile, pink
tile, impalla, proposte, pulli, wallpaper, wool, and two
lacquered wood textures. Each BTF material sample
(Fig. 1) is measured in 81 illumination angles as a RGB
image (C = 3). Each of our three test sets has fixed
viewpoint direction, the declination angles of viewing
direction from surface normal are 0◦, 30◦, and 60◦, in
plane rotation is not included. All images were cropped
to the same size 256× 256.

3.1. Compared Features

Our proposed features are compared with the most
popular features such as the Gabor features, steerable
pyramid features and Local Binary Patterns (LBP).

The Gabor features [11], which are computed from
responses of Gabor filters, were computed separately
for each spectral plane and concatenated into the fea-
ture vector. The Opponent Gabor features [10], which
are extension to colour textures, analyses relations be-

Table 1. Size of feature vectors.
method size method size
Gabor features 144 2D CAR-KL 260
Opponent Gabor 252 GMRF-KL 248
Steerable pyramid 2904 3D CAR 236
LBP8,1+8,3, grey 512 LBP8,1+8,3 1536
LBPu2

16,2, grey 243 LBPriu2
16,2 54

tween spectral channels. We have also experimented
with brightness normalisation prior to feature computa-
tion (denoted as “nm.”). Both Gabor feature vectors are
compared with the author’s suggested norms ([11, 10]).

Steerable pyramid features are statistics of Steerable
pyramid decomposition, which were proposed for tex-
ture synthesis in [16]. The feature vectors are compared
with the same norm as Gabor features.

LBP [13] are histograms of texture micro patterns,
which are thresholded values at each pixel neighbour-
hood. Subsequently, the histograms are compared using
Kullback-Leibler divergence as suggested in [13]. We
have tested features: LBP8,1+8,3 and LBPu2

16,2 , which
were published with best performance under different
illuminations (Outex database) and rotation invariant
features LBPriu2

16,2 . The features were computed ei-
ther on grey-scale images or on each spectral plane sep-
arately and concatenated into the feature vector. Bright-
ness normalisation is not necessary.

The proposed MRF features were computed at K =
4 levels of Gaussian pyramid, using the 6-th order hi-
erarchical neighbourhood, which consists in η = 14
neighbours. The size of feature vectors used is listed
in Tab. 1.

3.2. Results

In our experiments, single training image per each
material was randomly chosen and the remaining im-
ages were classified using the nearest neighbour ap-
proach. The results in Tab. 2 are averages over 105

random choices of training images and the last col-
umn consists in averages of previous columns. We can
see that the far best performance (90.3%) was achieved
with 2D CAR-KL model and L1 distance. The best al-
ternative features were Opponent Gabor features with
average performance 77.4%, the best of LBP features
achieved 65.6%. Although the LBP feature are invariant
to brightness changes, these results demonstrate their
inefficiency to handle illumination direction variations.
Rotation invariant LBP features are more capable, how-
ever rotating illumination cannot be modeled as a sim-
ple image rotation.



Table 2. Correct classification [%], using
one random training image per texture.

viewpoint declination angle
method 0◦ 30◦ 60◦ avg.
Gabor features. 71.7 64.6 60.1 65.5
Opponent Gabor 82.5 77.7 71.7 77.3
Steerable pyramid 72.3 65.5 60.4 63.1
Opponent Gabor, nm. 80.5 77.6 74.2 77.4
LBP8,1+8,3, grey 61.2 61.1 65.4 62.6
LBPu16,2, grey 55.7 56.3 60.7 57.6
LBP8,1+8,3 65.7 64.2 67.0 65.6
LBPriu16,2 68.4 60.7 57.4 62.2
2D CAR-KL, L1 92.4 91.1 87.5 90.3
3D CAR, L1 87.4 84.3 78.9 83.5
GMRF-KL, L1 89.6 86.3 81.0 85.6
GMRF-KL, FC3 86.5 82.6 78.7 82.6
GMRF-KL, L0.2 87.1 83.7 79.6 83.5
2D CAR-KL, FC3 92.3 89.6 85.7 89.2
2D CAR-KL, L0.2 91.8 89.5 85.8 89.0
3D CAR, FC3 89.8 86.1 80.2 85.4
3D CAR, L0.2 89.2 85.7 81.0 85.3

4. Conclusions

We have introduced MRF based features which are
invariant to brightness and illumination spectrum varia-
tions and they are considerably robust to illumination
direction changes. Moreover, we have demonstrated
their superiority over Gabor or LBP features, which
have significant difficulties to correctly recognize tex-
tures under changing illumination direction. In further
research we will target rotation invariance and integra-
tion into an image retrieval system.
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